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Abstract. We present simple analytical formulae which describe solutions of the RG equations for Yukawa
couplings in SUSY gauge theories with the accuracy of a few per cent. Performing the Grassmannian
expansion in these solutions, one finds those for all the soft couplings and masses. The solutions clearly
exhibit the fixed point behaviour which can be calculated analytically. A comparison with numerical
solutions is made.

1 Introduction

The renormalization group equations (RGEs) for the rigid
couplings and soft parameters in SUSY gauge theories
play a crucial role in applications. Actually, all predictions
of the MSSM are based on solutions to these equations in
leading and next-to-leading orders [1]. Typically, one has
three gauge couplings, one or three Yukawa couplings (for
the case of low or high tanβ, respectively) and a set of soft
couplings. In leading order, solutions to the RGEs for the
gauge couplings are simple; however, already for Yukawa
couplings, they are known in an analytical form only for
the low tanβ case, where only the top coupling is left.
Moreover, even in this case solutions for the soft terms
look rather cumbersome and difficult to explore [2].

In a recent paper [3], it has been shown that solutions
to the RGEs for the soft couplings follow from those for
the rigid ones in a straightforward way. 1 One takes the so-
lution for the rigid coupling (gauge or Yukawa), substitute
instead of the initial conditions their modified expressions

αi ⇒ α̃i = αi(1 + Miη + M̄iη̄ + 2MiM̄iηη̄), (1)

Yk ⇒ Ỹk = Yk(1 − Akη − Ākη̄ + AkĀkηη̄ + Σkηη̄). (2)

where η = θ2, η̄ = θ̄2, and θ and θ̄ are the Grassmannian
parameters, and expand over these parameters. This gives
the solution to the RGEs for the soft couplings.

Hereafter the following notation is used:

αi ≡ g2
i

16π2 , Yk ≡ y2
k

16π2 , Σk =
3∑

j=1

m2
j . (3)

a e-mail: codoban@thsun1.jinr.ru
b e-mail: kazakovd@thsun1.jinr.ru
1 Here we follow the approach advocated in [4]. A similar

method which was used in a somewhat different way has been
also presented in [5,6].

where gi and yk are the gauge and Yukawa couplings, re-
spectively, and m2

j are the soft masses associated with each
scalar field.

This procedure, however, assumes that one knows so-
lutions to the RGEs for the rigid couplings in the analytic
form. For instance, in the case of the MSSM in the low
tanβ regime this allows one to get solutions for the soft
couplings and masses simpler than those known in the lit-
erature (see [3]). At the same time, in many cases such
solutions are unknown. Actual examples are the MSSM
with high tanβ and NMSSM. One is bound to solve the
RGEs numerically when the number of coupled equations
increases dramatically with the soft terms being included.

Below we propose simple analytical formulae which
give an approximate solution to the RGEs for Yukawa
couplings in an arbitrary SUSY theory with the accuracy
of a few per cent. Performing the Grassmannian expansion
in these approximate solutions one can get those for the
soft couplings in a straightforward way. As an illustration
we consider the MSSM in the high tanβ regime.

One can immediately see that approximate solutions
obtained in this way possess infrared quasi-fixed points
[7] which can be found analytically. They appear in the
limit when the initial values of the Yukawa couplings are
much larger than those for the gauge ones. Then, one can
analytically trace how the initial conditions for the soft
terms disappear from their solutions in the above men-
tioned limit.

The paper is organized as follows. In Sect. 2, we con-
sider the MSSM in the low tanβ regime, where all so-
lutions are known analytically and describe briefly the
Grassmannian expansion. In Sect. 3, we present our ap-
proximate solutions for the Yukawa couplings and obtain
those for the soft terms. We also present a numerical il-
lustration and compare approximate solutions with the
numerical ones. The fixed point behaviour is discussed.
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Section 4 contains our conclusions. The explicit formulae
for the soft couplings and masses are given in the Appen-
dices.

2 The MSSM: exact solutions
in the low tan β case

Consider the MSSM in the low tanβ regime. One has three
gauge and one Yukawa coupling. The one-loop RG equa-
tions are

α̇i = −biα
2
i , bi = (

33
5

, 1,−3), i = 1, 2, 3. (4)

Ẏt = Yt

(
16
3

α3 + 3α2 +
13
15

α1 − 6Yt

)
. (5)

with the initial conditions αi(0) = α0, Yt(0) = Y0, and
t = ln(M2

X/Q2). Their solutions are given by [2]

αi(t) =
α0

1 + biα0t
, Yt(t) =

Y0E(t)
1 + 6Y0F (t)

, (6)

where

E(t) =
∏

i

(1 + biα0t)ci/bi , ci =
(

13
15

, 3,
16
3

)
, (7)

F (t) =
∫ t

0
E(t′)dt′. (8)

To get solutions for the soft terms, it is enough to per-
form the substitution α → α̃ and Y → Ỹ for the initial
conditions in (6) and expand over η and η̄. Expanding the
gauge coupling in (6) up to η one has (hereafter we assume
Mi0 = m1/2)

Mi(t) =
m1/2

1 + biα0t
. (9)

Performing the same expansion for the Yukawa coupling
and using the relations

dẼ

dη

∣∣∣∣∣
η

= m1/2t
dE

dt
,

dF̃

dη

∣∣∣∣∣
η

= m1/2(tE − F ). (10)

one finds the well-known expression [2]

At(t) =
A0

1 + 6Y0F
+ m1/2

(
t

E

dE

dt
− 6Y0(tE − F )

1 + 6Y0F

)
.

(11)
To get the solution for the Σ term, one has to make an
expansion over η and η̄. This can be done with the help
of the following relations:

d2Ẽ

dηdη̄

∣∣∣∣∣
η,η̄

= m2
1/2

d
dt

(
t2

dE

dt

)
,

d2F̃

dηdη̄

∣∣∣∣∣
η,η̄

= m2
1/2t

2 dE

dt
.

(12)
As a result one has [3]

Σt(t) =
Σ0 − A2

0

1 + 6Y0F
+

(A0 − m1/26Y0(tE − F ))2

(1 + 6Y0F )2

+m2
1/2

[
d
dt

(
t2

E

dE

dt

)
− 6Y0

1 + 6Y0F
t2

dE

dt

]
.(13)

which is much simpler than what one finds in the litera-
ture [2], though coinciding with it after some cumbersome
algebra.

One can also write down solutions for the individual
masses using the Grassmannian expansion of those for
the corresponding superfield propagators. For the first two
generations one has

m2
QL

= m2
0 +

1
2
m2

1/2

(
16
3

f3 + 3f2 +
1
15

f1

)
, (14)

m2
UR

= m2
0 +

1
2
m2

1/2

(
16
3

f3 +
16
15

f1

)
, (15)

m2
DR

= m2
0 +

1
2
m2

1/2

(
16
3

f3 +
4
15

f1

)
, (16)

m2
H1

= m2
0 +

1
2
m2

1/2

(
3f2 +

3
5
f1

)
, (17)

m2
LL

= m2
0 +

1
2
m2

1/2

(
3f2 +

3
15

f1

)
, (18)

m2
ER

= m2
0 +

1
2
m2

1/2

(
12
5

f1

)
, (19)

where

fi =
1
bi

(
1 − 1

(1 + biα0t)2

)
. (20)

The third generation masses get a contribution from the
top Yukawa coupling

m2
bR

= m2
DR

, (21)

m2
bL

= m2
DL

+ ∆/6, (22)

m2
tR

= m2
UR

+ ∆/3, (23)

m2
tL

= m2
UL

+ ∆/6, (24)

m2
H2

= m2
H1

+ ∆/2, (25)

where ∆ is related to Σt (13) by

∆ = Σt − Σ0 − m2
1/2

[
d
dt

(
t2

E

dE

dt

)]

=
Σ0 − A2

0

1 + 6Y0F
+

(A0 − m1/26Y0(tE − F ))2

(1 + 6Y0F )2

−m2
1/2

6Y0

1 + 6Y0F
t2

dE

dt
− Σ0.

With analytic solutions (6,11,13) one can analyze the
asymptotic and, in particular, find the infrared quasi-fixed
points [7] which correspond to Y0 → ∞

Y FP
t =

E

6F
, (26)

AFP
t =m1/2

(
t

E

dE

dt
− tE − F

F

)
, (27)

ΣFP
t =m2

1/2

[(
tE − F

F

)2

+
d
dt

(
t2

E

dE

dt

)
− t2

F

dE

dt

]
.(28)

One can clearly see that the dependence on Y0, A0 and Σ0
disappears from (26)–(28). Some residual dependence on
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m2
0 is left for the soft masses and partially cancels with

that of ∆.
Below we demonstrate how the same procedure works

in the case of approximate solutions. As a realistic example
we take the MSSM in the high tanβ regime.

3 The MSSM: approximate solutions
in the high tan β case

The one-loop RGEs for the Yukawa couplings in this case
look like

Ẏt = Yt

(
16
3

α3 + 3α2 +
13
15

α1 − 6Yt − Yb

)
,

Ẏb = Yb

(
16
3

α3 + 3α2 +
7
15

α1 − Yt − 6Yb − Yτ

)
,

Ẏτ = Yτ

(
3α2 +

9
5
α1 − 3Yb − 4Yτ

)
.

Since the exact solution is absent and might be too cum-
bersome, we look for an approximate one in a simple form
similar to that of (6).

3.1 The choice of the approximate solution

In choosing approximate solutions we follow the idea of
[8] where an approximate solution for Yt and Yb ignor-
ing Yτ has been proposed. Our suggestion is to consider
separate brackets for each propagator entering into the
Yukawa vertex. Then one has the following expressions
for the Yukawa couplings:

Yt =
Yt0Et

[1 + A(Yt0Ft + Yb0Fb)]1/A[1 + 2BYt0Ft]1/B

× 1
[1 + 3CYt0Ft]1/C

,
1
A

+
1
B

+
1
C

=1

Yb =
Yb0Eb

[1 + A(Yt0Ft + Yb0Fb)]1/A[1 + 2BYb0Fb]1/B

× 1
[1 + C(3Yb0Fb + Yτ0Fτ )]1/C

,

Yτ =
Yτ0Eτ

[1 + A′Yτ0Fτ ]1/A′
[1 + 2B′Yτ0Fτ ]1/B′

× 1
[1 + C(3Yb0Fb + Yτ0Fτ )]1/C

,

1
A′ +

1
B′ +

1
C

=1

where the brackets correspond to the Q, U, H2, Q, D, H1
and L, E, H1 propagators, respectively. Here Et and Ft

are given by (7) and (8), and Eb and Eτ have the same
form but with c

(b)
i = (7/15, 3, 16/3) and c

(τ)
i = (9/5, 3, 0),

respectively.
The brackets are organized so that they reproduce the

contributions of particular diagrams to the corresponding

anomalous dimensions. The coefficients A, B, C, A′ and B′
are arbitrary and their precise values are not so impor-
tant. When Yukawa couplings Yi0 are small enough, one
can make an expansion in each bracket, and the depen-
dence of these coefficients disappears. However, for large
couplings, which are of interest for us because of the fixed
points, we have some residual dependence. The require-
ment that the sum of the exponents equals 1 follows from
a comparison with the RGEs. Solutions are close to the
exact ones when the brackets are roughly equal to each
other. Apparently, since Fτ < Ft ∼ Fb and Yτ ≤ Yb ≤ Yt

one cannot completely satisfy this requirement. Our choice
of the coefficients A, B, C, A′ and B′ is dictated mainly by
simplicity. In the following we choose them as

B = A, C = 2/3A → A = 7/2, B = 7/2, C = 7/3, (29)

B′ = A′/2 → A′ = 21/4, B′ = 21/8. (30)
This gives approximate solutions like

Yt ≈ Yt0Et[
1 +

7
2
(Yt0Ft + Yb0Fb)

]2/7

[1 + 7Yt0Ft]
5/7

, (31)

Yb ≈ Yb0Eb[
1 +

7
2
(Yt0Ft + Yb0Fb)

]2/7

[1 + 7Yb0Fb]
2/7

(32)

× 1[
1 +

7
3
(3Yb0Fb + Yτ0Fτ )

]3/7 ,

Yτ ≈ Yτ0Eτ[
1+

21
4

Yτ0Fτ

]4/7[
1+

7
3
(3Yb0Fb+Yτ0Fτ )

]3/7 . (33)

Solutions for Ai and Σi can be obtained by a Grassman-
nian expansion with the initial conditions

Ai(0) = A0, Σi(0) = Σ0. (34)

These initial conditions correspond to the so-called univer-
sality hypothesis which we follow in our numerical illus-
tration for simplicity. However, one can choose arbitrary
initial conditions for the soft terms when needed. This
leads to an obvious modification of the formulae.

One can also get the corresponding solutions for the
individual soft masses. This can be achieved either by a
Grassmannian expansion of the corresponding brackets in
(31)–(33), or by expressing the masses through the Σs in
an exact way. The second way gives a slightly better agree-
ment with the numerical solutions (see below). We present
the explicit expressions for the soft terms and masses in
Appendix A.

3.2 Numerical analysis

We start by investigating the precision of the approximate
solutions for the Yukawa couplings. To estimate the accu-
racy, we introduce a relative error which is defined as

ε =
Yapprox − Ynumeric

Ynumeric
, (35)
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Fig. 1. Yt, Yb and Yτ approximation errors. Numerical labels
show the ratio Yb0/Yt0 for the corresponding groups of curves
(split by different values of Yτ0)

and which corresponds to the MZ scale (t = 66) at the end
of the integration range. The accuracy for the solutions of
the soft terms is defined in the same way.

Let us take at the beginning all three Yukawa couplings
to be equal at the GUT scale and to have their common
value Y0 in the range (0.01 ÷ 25)α0. The upper limit is
taken in order not to leave the perturbativity regime. We
find that for Y0 ≤ α0 the approximation errors are less
than 3% for all Y s. While for Yt it remains smaller than
2% over the whole range of initial values at the GUT scale,
for Yb the error increases up to 4% and for Yτ up to 14%
(for large values of Y0). It is worth mentioning that for
small Y0 (around α0/2 and below) the accuracy is very
good (fractions of a per cent or better).

Consider now Yb0 = Yτ0 = Y0 ≤ 10α0 and let the top
Yukawa coupling vary within the limits 1 ≤ Yt0/Y0 ≤ 10
in order to examine the applicability of our formulae. In
this case the accuracy is spoilt a little bit with increasing
initial values. Namely, the error for Yt increases up to 10%,
and for Yb and Yτ up to 20%. However, if one keeps Y0 in
the range (1/100 ÷ 1/2)α0 the accuracy for Yt remains
better than 3%, and for Yb and Yτ better than 10%.

The particular case considered above seems to have the
worst accuracy. This is not surprising since our approxi-
mate formulae are supposed to work best when all three
Yukawa couplings are nearly equal. If we keep Yτ0 ≤ Yb0 ≤
Yt0 and the relative ratios less than 5, we get an average
error of less than 5% for Yt, about 5% for Yb and 10%
for Yτ . This statement is illustrated in Fig. 1. For each
Yukawa coupling we have plotted the error as a function
of Yt0 in the range (1/10 ÷ 10)α0. The ratios are kept
within the region 1 ≤ Yt0/Yb0 ≤ 5 and 1 ≤ Yb0/Yτ0 ≤ 3.

Further on, we narrow the range of initial values up to
(1/10÷10)α0 because the errors (defined as in (35)) come
to an asymptotic value for Y0 > 10α0 and almost vanish
for Y0 < α0/10. The comparison of numerical and approxi-
mated solutions is shown in Fig. 2 for three different sets of
Y0s. The approximate solutions follow the numerical ones
quite well, preserving their shape, and they have a high
accuracy, especially in the case of equal Yukawa couplings
at the GUT scale. However, as can be seen from the top
of Fig. 2, one can take arbitrary initial conditions for the
Yukawa couplings, in particular those which are needed to
fit the t/b/τ masses, and to use our approximate solutions
for these purposes.

For the soft couplings, A, we take the initial values at
the GUT scale to be A0 = (−2,−1, 0, 1, 2)m1/2 and leave
Y0s in the narrow range as above. Then, we get an accu-
racy of (3÷5)% for At and Ab. For Aτ the approximation
is worse when A0 is taken to be negative or smaller than
m1/2 (see Fig. 2), but things go better for large initial val-
ues of A0 and we get an accuracy of about 10%. Again
it should be mentioned that this is an accuracy at the
end point where Aτ itself is close to 0 and the accuracy
defined as (35) merely gives an odd hint of the precision.
Along the curves the accuracy is much better. In Fig. 2 we
have plotted the behaviour of At, Ab and Aτ for three dif-
ferent initial values of A0, namely {−m1/2, 0, m1/2} and
for one set of Y0s. As for the Σs, keeping the range of
parameter space for Y0 and A0 as above, we get an accu-
racy of typically 2% for Σt (even better for fairly equal
Y0s). For Σb the precision is around 4%. With Στ we get
into the same troubles as for Aτ . The approximation be-
comes good (about 10%) only for a large enough ratio of
m2

0/m2
1/2. The approximation errors for As and Σs are

linked with those for Y . If one considers only the sets of
small initial values for Y0 (less than α0/2), then the Σs are
approximated with a precision better than 1%, regardless
of the A0 values. The precision for Σ increases with A0,
but this dependence is not so striking as the one on Y0.

The approximate formulae for the soft masses may be
derived from the Σs using (39)–(45). In this case the ap-
proximate solutions give an accuracy of about 1 ÷ 3% for
m2

Q3
, m2

U3
and (3 ÷ 5)% for m2

D3
. For the Higgs masses

we get a good approximation (of about 5% on average)
for m2

H2
, and a satisfactory one for m2

H1
(typically 10%).

This accuracy is almost insensitive to the A0 variation (we
took it to be in the range (−2 ÷ 2)m1/2) and on the ratio
m2

0/m2
1/2 (taken to be 0.5 ÷ 2).
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Fig. 2. Comparison of approximate
and numerical solutions for Y , A and
Σ. The evolution of the soft terms
A and Σ has been plotted for Yt0 =
5α0, Yb0 = Yτ0 = 2α0. Dotted lines
correspond to the analytical approxi-
mation, solid lines to the numerical so-
lution

The slepton masses (see Fig. 3) are not approximated
properly in an analogous way. This is mainly due to the
less accurate approximation of Yτ .

As a concluding remark on the numerical analysis, it
should be mentioned that one has a rather good approx-
imation for small (less than α0/2) initial values of the
Yukawa couplings. For larger values of Y s one has a good
approximation especially in the case of unification of the
Yukawa couplings.

3.3 The fixed points

One can easily see that the solutions (31)–(33) exhibit
the quasi-fixed point behaviour when the initial values

Yt0 = Yb0 = Yτ0 ≥ α0. In this case, one can drop 1 in
the denominator and the resulting expressions become in-
dependent of the initial conditions:

Y FP
t ≈ Et[

7
2
(Ft + Fb)

]2/7

[7Ft]
5/7

, (36)

Y FP
b ≈ Eb[

7
2
(Ft + Fb)

]2/7

[7Fb]
2/7
[
7
3
(3Fb + Fτ )

]3/7 ,(37)

Y FP
τ ≈ Eτ[

21
4

Fτ

]4/7[7
3
(3Fb + Fτ )

]3/7 . (38)
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Fig. 3. Comparison of approximate and numerical solutions
for the soft masses. The curves correspond to the following
choice of initial conditions: A0 = 0, m2

0 = (1/2)m2
1/2 and m2

0 =
2m2

1/2, Yt0 = 5α0, Yb0 = Yτ0 = 2α0. Slepton masses are shown
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1/2. Dotted lines correspond to the analytical

approximation, solid lines to the numerical solution

These expressions being expanded over the Grassmanni-
an variables give the quasi-fixed points for the soft terms
and masses. The explicit expressions are presented in Ap-
pendix B.

We see that the IRQFP behaviour is clearly expressed
for Yt and Yb (see Fig. 4), and our approximate solution
describes the fixed point line well. The same takes place
for the corresponding As and Σs. For Yτ , Aτ and Στ the
accuracy is worse, however, the solution is still reliable.
The soft mass terms there exhibit the same IRQFP be-
haviour, though some residual dependence on the initial
conditions is left in full analogy with the exact solutions in
the low tanβ case. The approximate solutions allow one
to calculate the IRQFP analytically.

One can see that the fixed points for the soft terms
naturally follow from the Grassmannian expansion of our
approximate solutions (36)–(38), and they inherit their
stability properties, as has been shown in [9]. In particular,

the behaviour of the Σs essentially repeats that of the
Yukawa couplings in agreement with [10].

The existence of the IRQFPs allows one to make pre-
dictions for the soft masses without exact knowledge of
the initial conditions. This property has been widely used
(see, for example, [11]) and though the IRQFPs give a
slightly larger top mass when imposing b–τ unification; it
is still possible to fit the quark masses within the error
bars and to make predictions for the Higgs and sparticle
spectrum [12]. This explains the general interest in the
IRQFPs.

4 Discussion

We hope to convince the reader that the approximate so-
lutions presented above reproduce the behaviour of the
Yukawa couplings with good precision in the whole inte-
gration region and for a large range of initial values. The
relative accuracy is typically a few per cent and is worse
only at the end of the integration region mainly due to
the smallness of the quantities themselves. Moreover, we
have shown how the approximate solutions for the soft
terms and masses follow from those for the rigid couplings.
This demonstrates how the Grassmannian expansion, ad-
vocated in [3], works in the case of approximate solutions
as well.

For illustration we have considered universal initial
conditions for the soft terms. In recent time there ap-
peared some interest in non-universal boundary condi-
tions. Non-universality can also be included in our for-
mulae at the expense of changing (10) and (34) using the
same substitution rules, see (1) and (2).

Since the form of our approximate solutions has been
”guessed” ad hoc starting from some reasonable argu-
ments, there is no direct way to improve them. However,
one can imagine a more constructive derivation of those so-
lutions which would allow one to make corrections. Need-
less to say that it is enough to construct a solution for
the rigid terms. Solutions for the soft terms will follow
automatically.
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Appendix A

We here present approximate expressions for the soft cou-
plings and masses corresponding to (31)–(33):

Mi =
m1/2

1 + biα0t
,

At ≈ A0

(
1 − Yt0Ft + Yb0Fb

1 + 7
2 (Yt0Ft + Yb0Fb)

− 5Yt0Ft

1 + 7Yt0Ft

)

−m1/2

(
t

Et

dEt

dt
− Yt0(tEt − Ft) + Yb0(tEb − Fb)

1 + 7
2 (Yt0Ft + Yb0Fb)
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Fig. 4. The IRQFP behaviour for
Yukawa couplings, soft terms At,b,τ ,
and the Σs. Numerical solutions for
all As are given for Yt0 = 5α0,Yb0 =
Yτ0 = 2α0. For Σ we took A0 = 0,
three different sets of Y0s and m2

0.
The dotted lines are the IRQFP
from (36)–(38) and Appendix B

−5Yt0(tEt − Ft)
1 + 7Yt0Ft

)
,

Ab ≈ A0

(
1 − Yt0Ft + Yb0Fb

1 + 7
2 (Yt0Ft + Yb0Fb)

− 2Yb0Fb

1 + 7Yb0Fb

− 3Yb0Fb + Yτ0Fτ

1 + 7
3 (3Yb0Fb + Yτ0Fτ )

)

−m1/2

(
t

Eb

dEb

dt
− Yt0(tEt − Ft) + Yb0(tEb − Fb)

1 + 7
2 (Yt0Ft + Yb0Fb)

−2Yb0(tEb −Fb)
1 + 7Yb0Fb

−3Yb0(tEb −Fb) + Yτ0(tEτ −Fτ )
1 + 7

3 (3Yb0Fb + Yτ0Fτ )

)
,

Aτ ≈ A0

(
1 − 3Yτ0Fτ

1 + 21
4 Yτ0Fτ

− 3Yb0Fb + Yτ0Fτ

1 + 7
3 (3Yb0Fb + Yτ0Fτ )

)

−m1/2

(
t

Eτ

dEτ

dt
− 3Yτ0(tEτ − Fτ )

1 + 21
4 Yτ0Fτ

−3Yb0(tEb − Fb) + Yτ0(tEτ − Fτ )
1 + 7

3 (3Yb0Fb + Yτ0Fτ )

)
,

Σt ≈ Σ0

(
1 − Yt0Ft + Yb0Fb

1 + 7
2 (Yt0Ft + Yb0Fb)

− 5Yt0Ft

1 + 7Yt0Ft

)
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− 1
1+ 7

2 (Yt0Ft+Yb0Fb)

×
(

A2
0Yt0Ft−2A0Yt0m1/2(tEt−Ft)

+Yt0m
2
1/2t

2 dEt

dt
+ A2

0Yb0Fb −2A0Yb0m1/2(tEb−Fb)

+Yb0m
2
1/2t

2 dEb

dt

)

− 5
1 + 7Yt0Ft

(
A2

0Yt0Ft − 2A0Yt0m1/2(tEt − Ft)

+Yt0m
2
1/2t

2 dEt

dt

)

+
7
2(

1+ 7
2 (Yt0Ft+Yb0Fb)

)2(−A0Yt0Ft

+Yt0m1/2(tEt−Ft) − A0Yb0Fb

+Yb0m1/2(tEb − Fb)
)2

+m2
1/2

d
dt

(
t2

Et

dEt

dt

)

+
35(

1 + 7Yt0Ft

)2(−A0Yt0Ft + Yt0m1/2(tEt − Ft)
)2

,

Σb ≈ Σ0

(
1 − Yt0Ft + Yb0Fb

1 + 7
2 (Yt0Ft + Yb0Fb)

− 2Yb0Fb

1 + 7Yb0Fb

− 3Yb0Fb + Yτ0Fτ

1 + 7
3 (3Yb0Fb + Yτ0Fτ )

)

− 1
1+ 7

2 (Yt0Ft +Yb0Fb)

×
(

A2
0Yt0Ft −2A0Yt0m1/2(tEt−Ft)

+Yt0m
2
1/2t

2 dEt

dt
+ A2

0Yb0Fb

−2A0Yb0m1/2(tEb − Fb) + Yb0m
2
1/2t

2 dEb

dt

)

− 2
1 + 7Yb0Fb

(
A2

0Yb0Fb

−2A0Yb0m1/2(tEb − Fb) + Yb0m
2
1/2t

2 dEb

dt

)

− 1
1 + 7

3 (3Yb0Fb + Yτ0Fτ )

(
3A2

0Yb0Fb + A2
0Yτ0Fτ

−6A0Yb0m1/2(tEb − Fb) − 2A0Yτ0m1/2(tEτ − Fτ )

+3Yb0m
2
1/2t

2 dEb

dt
+ Yτ0m

2
1/2t

2 dEτ

dt

)

+
7
2(

1+ 7
2 (Yt0Ft+Yb0Fb)

)2(−A0Yt0Ft

+Yt0m1/2(tEt−Ft) − A0Yb0Fb

+Yb0m1/2(tEb − Fb)
)2

+m2
1/2

d
dt

(
t2

Eb

dEb

dt

)

+14

(−A0Yb0Fb + Yb0m1/2(tEb − Fb)
)2(

1 + 7Yb0Fb

)2
+

7
3(

1+ 7
3 (3Yb0Fb+Yτ0Fτ )

)2(−3A0Yb0Fb −A0Yτ0Fτ

+3Yb0m1/2(tEb − Fb) + Yτ0m1/2(tEτ − Fτ )
)2

,

Στ ≈ Σ0

(
1 − 3Yτ0Fτ

1 + 21
4 Yτ0Fτ

− 3Yb0Fb + Yτ0Fτ

1 + 7
3 (3Yb0Fb + Yτ0Fτ )

)

− 3
1 + 21

4 Yτ0Fτ

(
A2

0Yτ0Fτ − 2A0Yτ0m1/2(tEτ − Fτ )

+Yτ0m
2
1/2t

2 dEτ

dt

)
− 1

1 + 7
3 (3Yb0Fb + Yτ0Fτ )

(
3A2

0Yb0Fb + A2
0Yτ0Fτ

−6A0Yb0m1/2(tEb − Fb) + 3Yb0m
2
1/2t

2 dEb

dt

−2A0Yτ0m1/2(tEτ − Fτ ) + Yτ0m
2
1/2t

2 dEτ

dt

)

+
63
4

(−A0Yτ0Fτ + Yτ0m1/2(tEτ − Fτ )
)2(

1 + 21
4 Yτ0Fτ

)2
+

7
3(

1 + 7
3 (3Yb0Fb + Yτ0Fτ )

)2 (−3A0Yb0Fb −A0Yτ0Fτ

+3Yb0m1/2(tEb − Fb) + Yτ0m1/2(tEτ − Fτ )
)2

+m2
1/2

d
dt

(
t2

Eτ

dEτ

dt

)
.

To find the individual soft masses one can formally per-
form integration of the RG equations and express the
masses through Σs solving a system of linear algebraic
equations. This gives

m2
Q3

=
13
61

m2
0 + m2

1/2

(
64
61

f3 +
87
122

f2 − 11
122

f1

)

+
1

122
(17Σt + 20Σb − 5Στ ) , (39)

m2
U3

=
7
61

m2
0 + m2

1/2

(
72
61

f3 − 54
61

f2 +
72
305

f1

)

+
1

122
(42Σt − 8Σb + 2Στ ) , (40)

m2
D3

=
19
61

m2
0 + m2

1/2

(
56
61

f3 − 42
61

f2 +
56
305

f1

)

+
1

122
(−8Σt + 48Σb − 12Στ ) , (41)

m2
H1

= −32
61

m2
0 + m2

1/2

(
−120

61
f3 − 3

122
f2 − 57

610
f1

)

+
1

122
(−9Σt + 54Σb + 17Στ ) , (42)

m2
H2

= −20
61

m2
0 + m2

1/2

(
−136

61
f3 +

21
122

f2 − 89
610

f1

)
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+
1

122
(63Σt − 12Σb + 3Στ ) , (43)

m2
L3

=
31
61

m2
0 + m2

1/2

(
40
61

f3 +
123
122

f2 − 103
610

f1

)

+
1

122
(3Σt − 18Σb + 35Στ ) , (44)

m2
E3

=
1
61

m2
0 + m2

1/2

(
80
61

f3 − 60
61

f2 +
16
61

f1

)

+
1

122
(6Σt − 36Σb + 70Στ ) . (45)

The masses of the squarks and sleptons of the first two
generations are given by (19)–(14).

Appendix B

We here present the IRQFPs for the soft couplings and
masses. They are obtained via Grassmannian expansion
of (36)–(38).

AFP
t ≈ −m1/2

(
t

Et

dEt

dt

−2
(tEt − Ft) + (tEb − Fb)

7(Ft + Fb)
− 5(tEt − Ft)

7Ft

)
,

AFP
b ≈ −m1/2

(
t

Eb

dEb

dt
− 2

(tEt − Ft) + (tEb − Fb)
7(Ft + Fb)

−2(tEb − Fb)
7Fb

−3
3(tEb − Fb) + (tEτ − Fτ )

7(3Fb + Fτ )

)
,

AFP
τ ≈ −m1/2

(
t

Eτ

dEτ

dt

−4(tEτ − Fτ )
7Fτ

− 3
3(tEb − Fb) + (tEτ − Fτ )

7(3Fb + Fτ )

)
,

ΣFP
t ≈ m2

1/2

(
−2

7
t2 dEt

dt + t2 dEb

dt

(Ft + Fb)
− 5

7
t2 dEt

dt

Ft

+
d
dt

(
t2

Et

dEt

dt

)
+

2
7

[(tEt − Ft) + (tEb − Fb)]2

(Ft + Fb)2

+
5
7

(tEt − Ft)2

F 2
t

)
,

ΣFP
b ≈m2

1/2

(
−2

7
t2 dEt

dt +t2 dEb

dt

(Ft+Fb)
− 2

7
t2 dEb

dt

Fb

−3
7

3t2 dEb

dt +t2 dEτ

dt

(3Fb+Fτ )

+
2
7

[(tEt − Ft) + (tEb − Fb)]2

(Ft + Fb)2
+

2
7

(tEb − Fb)2

F 2
b

+
3
7

[3(tEb − Fb) + (tEτ − Fτ )]2

(3Fb + Fτ )2

+
d
dt

(
t2

Eb

dEb

dt

))
,

ΣFP
τ ≈m2

1/2

(
−4

7
t2 dEτ

dt

Fτ
− 3

7
3t2 dEb

dt + t2 dEτ

dt

(3Fb +Fτ )

+
d
dt

(
t2

Eτ

dEτ

dt

)
+

4
7
(tEτ − Fτ )2

F 2
τ

+
3
7

[3(tEb − Fb) + (tEτ − Fτ )]2

(3Fb + Fτ )2

)
.
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